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Light-Induced Helix Formation
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The mechanism by which proteins fold is under active theoretical
and experimental investigation. Of particular current interest are bpy8 W /bpy" N
the earliest events in folding such as secondary structure formation g \ s et Ru™ /
and hydrophobic collapse, which occur on the nanosecond to E P ¢
microsecond time scale. There is a need for photochemical triggers Ground State Excited State
that can be used to initiate folding and conformational change on ) Ap=~8 Debye
this time scale. Existing methods include electron transfer-induced [Rub,m-OH]
folding of hemeproteinsphotodissociation of aromatic disulfides, ~ Figure 1. Tris-bipyridyl complex and the dipole moment change between
photodissociation of bezoinyl cagéghotoisomerization of diaz- ~ 9round and excited states.
ostilbene derivative$and temperature jump experimepfs-How- Table 1. Peptides Used in Current Study
ever, these techniques suffer from several limitations. Temperature

. . .. .. . sequence conformation

jump experiments are limited to conditions where the protein - FN AAAAA(MAARA) SA-CONH ———
; ; ; ; s - - A elical

undergoes a net unfolding reaction or to the folding of proteins FN-AAPAA(APARA) 5A-CONH; random

that undergo cold denaturation. Light-initiated ligand dissociation grs [Rubm]2*-CONH-AAAAA(AAARA) s:A-CONH,  helical
and electron transfer-initiated folding are limited to hemoproteins. RuFu  [Rubm]2t-CONH-AAPAA(APARA):A-CONH; random
Furthermore, photodissociation of bezoinyl cages and photoisomer-
ization of diazostilbene derivatives are not readily reversible, which
precludes signal averaging of a single sample, and studies with NHCH;]?*) indicated that the electron resides primarily on the
diazostilbene and bezoinyl cages as well as disulfide derivatives electron-deficient ligand (m-NHCi
have involved the preparation of cyclic structures that present highly ~ We therefore synthesized a series of peptides and theimRub
restrained conformation states. modified derivatives on the basis of Kim'a-helix forming
Proteins are known to fold or change conformations in response sequences (Table 1). The folding kinetics of these peptides have
to a change in the charge distribution of their cofactors. Furthermore, been extensively studied by T-jump infrared (IR) and fluorescence
measurements by Lockhart and Kirof the interaction between ~ methods, which provides an important comparison for the current
monomeriax-helices and solvent-exposed dipolar groups (internal study. Peptides Fs and RuFs were designed to be 50% helical at
Stark effect) or a titratable group (electrostatic screening) show that'oom temperature, so that the maximal change in folding was easily
the magnitude of the interaction energy between probe and partialobservable. We also prepared a nonhelical control with a helix-
charge on the N-terminus is significant{ kcal mof?) and breaking Pro included in the sequence. Circular dichroism (CD)
stabilizing. Thus, we sought an aromatic amide whose electronic Spectroscopy indicated that Fs and RuFs were 50% helical as
configuration could be rapidly switched in response to a short laser €xpected (Supporting Information). Indeed, the incorporation of an
pulse. To be most applicable, this transition should be readily aromatic capping group in RuFs led to a slight enhancement of the
reversible, and it should generate a relatively inert excited state helical content. Also, as expected, peptides Fu and RuFu were

with a lifetime significantly longer than the time scale for helix ~€ssentially devoid of helical content.
formation. The light-induced helix formation was monitored by infrared

Trls bipyridyl derlvatlves Of Ru(II) appear to fu|f||| these spectroscopy! Previous studiéd have shown that solvated helices

derivatives of tris- b|pyr|dy| complexes such as [BlmbOH]2+ around 1650 cimt. Therefore, the excited state decay kinetics of
(where Ru= Ru(ll); b = 2,2 bipyridine; and m-OH= 4'-methyl- the RuFs and RuFu peptides were probed near these frequencies.
2,2 -bipyridyl-4'-carboxylic acid) undergo metal-to-ligand charge As shown (Figure 2), both peptides exhibit an instantaneous
transfer (MLCT) to create an excited state which persists-fbr-2 bleaching component as well as a long-lived background. Because

us in solution under anaerobic conditichFhis probe typically the Ru complex _|s a racemic mixture of optical isomers (lambda
generates a photoinduced dipole chang&of~5—9 D, depending and delta), the signal observed corresponds to that of an average
on ligand substitutios; that is stable on the 100 ns time scale of the two optical diastereomers. The instantaneous component is

expected for helix formation. In addition, excited-state resonance the result of the photoinduced Stark effect, which effectively
Raman experiments of the methyl amide analogue (jReb broadens the vibrational transition and therefore causes a bleaching

of the amide I band? The long-lived component, however, is
attributed to the decrease in,@'s absorbance due to the local
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sas.upenn.edu; (D.G.M.) deweym@mail.med.upenn.edu. heating of the solvent by energies released from the excited-state
| Department of Chemistry. decay process. Nevertheless, the increase in temperature is small
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Foundation. (~0.5°C). Following the initial instantaneous bleaching, the excited
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Figure 2. (a) Decay kinetics of the RuFs peptide at 1630 ¢rmnd 30.3°C. Also shown are the D signal and bleaching recovery signal, as indicated.

(b) The net helix-coil transition signal obtained from (a) and the fit to a biexponential function, tAD3({t) = 0.0047[exp{-t/524 ns)— exp(—t/140 ns)].
(c) Decay kinetics of the RuFs and RuFu peptides at 1657 @nd 30.3°C, as indicated. (d) The net helix-coil transition signal obtained from (c) and the

fit to a biexponential function, that if\OD(t) = —0.003[expft/524 ns)— exp(t/239 ns)]. The longer helix-coil transition time observed at 1657%cm

is presumably due to the poorer quality of the signal around zero time.
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Figure 3. (a) Arrhenius plot of the observed helix-coil transition rate
constantkg. (b) The net helix-coil transition amplitude at 1630 ¢rwersus
temperature. The solid line is the fit to eq 7 in the Supporting Information.

state of the RuFu peptide is found to decay following first-order
kinetics with a time constant c£524 ns at 30.3C (Figure 2c),
which increases to~652 ns at 3.9°C. However, due to the
concomitant helix-coil transition process, the decay kinetics of the
RuFs peptide show complex behavior. The net helix-coil transition
signal (Figure 2b,d) of the RuFs peptide was obtained by subtracting
the ground-state bleaching recovery signal as well as fedignal,

as indicated (Figure 2a). Both signals were constructed from a
single-exponential function with a time constant that is equal to
that of the RuFu peptide and with amplitudes determined from the

instantaneous bleaching component and the long-lived background ()

(D20). As expected, the resulting helix-coil transition signal exhibits
a positive absorbance at 1630 c¢hr(Figure 2b) and a negative
absorbance at 1657 cth(Figure 2d), indicative of a net helical
content increase at the excited state.

It can be shown (Supporting Information) that the helix-coil
transition signal can be described by a biexponential function if

this transition is assumed to be a two-state process, although this

assumption is not rigorously valid.The two rate constants ace

= kg + k and 8 = k, respectively, wheré is the excited-state
decay rate constant, akg = k; + k; is the helix-coil transition
rate constant. Thus, fitting the helix-coil transition signal to a
biexponential function with one rate constant being fixed to the
population decay rate constant of the RuFu peptide allows us to
obtain the helix-coil relaxation rate constaky, In the temperature
range of 4-50 °C, we found that this rate constant follows the
Arrhenius relationship withe, = 13.5 kcal/mol (Figure 3a). This

is entirely consistent with our earlier studfes$n addition, the
amplitude of the helix-coil transition signal indicates how much
the helical conformation is stabilized by the photoinduced charge-

transfer process, which generates an electric dipole that is roughly
in parallel with the helical dipole but with the negative end residing
at the N-terminus of the helix. Fitting the amplitudes of the helix-
coil transition signals (Figure 3b) to eq 7 in the Supporting
Information yieldsAAG = 0.15 + 0.05 kcal/mol, favoring the
helical conformation. If the dipole moment of the excited-state Ru
complex is assumed teet8B D larger than that of the ground state,
such a stabilization factor corresponds to a helical dipole moment
of 50 D (Supporting Information), which is consistent with the
helical dipole moment estimated using 3.5 D/resitfue.

In summary, incorporation of [Rym-OH]?" at the N-terminus
of the Fs peptide enhances its stability$0.15 kcal/mol through
the mechanism of dipotedipole coupling at the excited state.
Therefore, photoinduced charge generation at a well-controlled and
specific location provides a convenient means to trigger helix-coil
transition on nanosecond or even faster time scales, which comple-
ments other fast initiation methods.
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